Consensus bond-charge increments fitted to electrostatic potential or field of many compounds: Application to MMFF94 training set

نویسندگان

  • Bruce L. Bush
  • Christopher I. Bayly
  • Thomas A. Halgren
چکیده

Ž . ABSTRACT: Bond-charge increments BCIs are additive parameters used to assign atomic charges for the MMFF force field. BCI parameters are classified parsimoniously according to two atom types and the bond order. We show how BCIs may be fitted rapidly by linear least squares to the calculated ab initio Ž . electrostatic potential ESP or to the electrostatic field. When applied simultaneously to a set of compounds or conformations, the method yields consensus values of the BCIs. The method can also derive conventional ‘‘ESP-fit’’ atomic charges with improved numerical stability. The method may be generalized to determine atom multipoles, multicenter charge templates, or electronegativities, but not polarizability or hardness. We determine 65 Ž . potential-derived PD BCI parameters, which are classified as in MMFF, by fitting the 6-31G* ESP or the electrostatic field of the 45 compounds in the original MMFF94 training set. We compare the consensus BCIs with classified BCIs that were fit to each molecule individually and with ‘‘unique-bond’’ BCIs Ž . ESP-derived atom charges . Consensus BCIs give a satisfactory representation for about half of the structures and are robust to the adjustment of the alkyl CH bond increment to the zero value employed in MMFF94. We highlight problems at three levels: Point approximation: the potential near lone pairs on sulfur and to some extent nitrogen cannot be represented just by atom charges. Bond classification: BCIs classified according to MMFF atom types cannot represent all

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D-QSAR Modeling of Anti-oxidant Activity of some Flavonoids

The anti-oxidant activities for a diverse set of flavonoids as TEAC (Trolox equivalent anti-oxidant capacity), assay were subjected to 3D-QSAR (3 dimensional quantitative structural-activity relationship) studies using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis). The obtained results indicated superiority of CoMSIA model over CoMFA...

متن کامل

Density functional theory study of the structural properties of cis-trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP)

In present study, the density functional theory (DFT-B3LYP) method with SVP basis set was used for optimizing and studying the electronic structural properties of cis and trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP) as powerful explosives at 298.15 K temperature and 1 atmosphere pressure. And also, Natural Bond Orbital (NBO) population analysis an...

متن کامل

Quantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations

In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...

متن کامل

Ab Initio Quality Electrostatic Atomic and Molecular Properties Including Intermolecular Energies from a Transferable Theoretical Pseudoatom Databank

The development of a theoretical databank of transferable pseudoatoms for fast prediction of the electron densities and related electronic properties of proteins is described. Chemically unique pseudoatoms identified on the basis of common connectivity and bonding are extracted from ab initio molecular densities of a large number of small molecules using a least-squares projection technique in ...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Computational Chemistry

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1999